Coronal cooling and its signatures in the rapid aperiodic variability of Galactic Black-Hole Candidates
نویسنده
چکیده
The most popular models for the complex phase and time lags in the rapid aperiodic variability of Galactic X-ray binaries are based Comptonization of soft seed photons in a hot corona, where small-scale flares are induced by flares of the soft seed photon input (presumably from a cold accretion disc). However, in their original version, these models have neglected the additional cooling of the coronal plasma due to the increased soft seed photon input, and assumed a static coronal temperature structure. In this paper, our Monte-Carlo/Fokker-Planck code for time-dependent radiation transfer and electron energetics is used to simulate the self-consistent coronal response to the various flaring scenarios that have been suggested to explain phase and time lags observed in some Galactic X-ray binaries. It is found that the predictions of models involving slab-coronal geometries are drastically different from those deduced under the assumption of a static corona. However, with the inclusion of coronal cooling they may even be more successful than in their original version in explaining some of the observed phase and time lag features. The predictions of the model of inward-drifting density perturbations in an ADAF-like, two-temperature flow also differ from the static-corona case previously investigated, but may be consistent with the alternating phase lags seen in GRS 1915+105 and XTE J1550-564. Models based on flares of a cool disc around a hot, inner two-temperature flow may be ruled out for most objects where significant Fourier-frequency-dependent phase and time lags have been observed. Subject headings: X-rays: stars — accretion, accretion discs — black hole physics — radiative transfer — radiation mechanisms: thermal
منابع مشابه
Comptonization signatures in the rapid aperiodic variability of Galactic Black-Hole Candidates
We investigate the effect of inverse-Compton scattering of flares of soft radiation in different geometries of a hot, Comptonizing region and a colder accretion disk around a solar-mass black hole. The photon-energy dependent light curves, their Fourier transforms, power spectra and Fourier-period dependent time lags of hard photons with respect to softer photons are discussed. On the basis of ...
متن کاملA New Model for the Hard Time Lags in Black Hole X-Ray Binaries
The time-dependent Comptonized output of a cool soft X-ray source drifting inward through an inhomogeneous hot inner disk or corona is numerically simulated. We propose that this scenario can explain from first principles the observed trends in the hard time lags and power spectra of the rapid aperiodic variability of the X-ray emission of Galactic black-hole candidates. Subject headings: X-ray...
متن کاملSAX J1808.4-3658 and the origin of X-ray variability in X-ray binaries and active galactic nuclei
The aperiodic X-ray variability in neutron star and black hole X-ray binaries (XRBs), and active galactic nuclei (AGN) shows a characteristic linear relationship between rms amplitude and flux, implying a multiplying-together or ‘coupling’ of variability on different time-scales. Such a coupling may result from avalanches of flares, due to magnetic reconnection in an X-ray emitting corona. Alte...
متن کاملX-ray Emissions from Three-dimensional Magnetohydrodynamic Coronal Accretion Flows
We calculate the radiation spectrum and its time variability of the black hole accretion disk-corona system based on the three-dimensional magnetohydrodynamic simulation. In explaining the spectral properties of active galactic nuclei (AGNs), it is often assumed that they consist of a geometrically thin, optically thick disk and hot, optically thin corona surrounding the thin disk. As for a mod...
متن کاملFast aperiodic variability in the black hole binary GRS 1915+105: the timing signature of relativistic ejection events
We present X-ray observations of the Black-Hole Binary GRS 1915+105 made with the RXTE (Rossi X-ray Timing Explorer). We concentrated on timing analysis of the strong variability focusing on its aperiodic variability on short (<1s) time scales. In the power density spectra, we found a feature which is seen in many transient systems, but until now was not detected in GRS 1915+105 due to its elus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000